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ABSTRACT 

Cold rolling mills sometimes do not seem able to control flatness as well as expected, taking into 
account the number of actuators they are equipped with. This paper, however, presents a systematic 
approach to the question of how to achieve the accurate flatness control  that you would expect to 
get in a well-actuated cluster mill. The key to understanding the restrictions and difficulties is 
singular value decomposition (SVD) of the matrix that describes the flatness responses for all 
actuators. This decomposition clarifies which flatness error shapes are easy to counteract, in the 
sense  that  they  require  little  actuator  movement,  and  which  error  shapes  are  difficult  or  even  
impossible to reduce, since they would require very large combined actuator movements. Having 
sorted this out, a control strategy that uses this knowledge is presented. Experience and results are 
provided from its successful use in practice. 
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INTRODUCTION 

Flatness control in cold-rolling is a multivariable control problem. Abstractly speaking, you can 
view flatness errors and actuator movements as occurring in spaces of high dimension. Different 
shapes of the flatness error correspond to different directions in the space of flatness errors, and the 
dimension of this space equals the number of sensors. Different combinations of actuator movement 
correspond  to  different  directions  in  the  space  of  actuator  movements,  and  the  dimension  of  this  
space equals the number of actuators. 

A combined movement of actuators in the actuator space will influence the errors in a certain 
direction in the error space and this with a certain gain. This gain will vary a lot with the direction 
of the movement. Singular value decomposition (SVD) is the systematic way to get insight into this. 
It orders the influence into orthogonal directions in the spaces according to the gains, from highest 
gain to lowest, often ending with some directions having zero gain. Use of SVD in flatness control 
has previously been described in [1], [2], and [3]. You sometimes see flatness errors being 
described using a basis of orthogonal polynomials. The SVD provides another orthogonal basis, 
with the additional advantage that for each error basis vector you also get the corresponding 
actuator basis vector and the gain. 

The largest singular value and the corresponding basis vectors tell which shape of flatness error is 
the easiest to eliminate, in the sense that it takes the least actuator movements. It also tells how the 
required combined actuator movement looks. This is continued for gradually more difficult-to-
reduce flatness error shapes, corresponding to directions in error space that are orthogonal to the 
ones already treated. If the smallest singular values are zero, then the corresponding actuator 
directions form a null space, meaning that movements of actuators in this space cancel out the 
flatness effect of each other. In other words, when there is a null space the flatness effect obtained 



with one actuator can alternatively be obtained by a certain combined movement of the other 
actuators. 

It often turns out that a mill with ten actuators or more can still not control more than around five 
directions in practice, since the remaining ones would require too large actuator movements. The 
problem is not only the restricted actuator ranges. For a direction related to a very small singular 
value, the responses to the large movements are supposed to cancel in all directions except the 
intended one. But to achieve this precise cancellation, the model would have to be unrealistically 
perfect. This does not mean that the extra actuators are useless. It just exposes the control challenge. 
The control solution should use all actuators and all degrees of freedom, but not nervously spend 
large movements on chasing errors that are too hard to counteract in practice. In contrast to the 
solutions presented in [1] and [2], all degrees of freedom are still available for control with the 
solution presented in this paper. 

The paper presents the mathematical background in section 1. The control solution and some of its 
properties are presented in section 2. A discussion of the tuning of this solution is given in section 3. 
Practical experience is exemplified in section 4, and some concluding remarks are provided in 
section 5. 

1. THE MILL MATRIX AND ITS SINGULAR VALUE DECOMPOSITION 

The influence of the actuators on the flatness can be described by a matrix which we call the mill 
matrix. Its columns are formed by the steady state flatness responses from all actuators, one column 
per actuator. Each flatness response is a column vector with one element per measurement roll 
sensor position. So the dimension of the mill matrix is (number of sensor positions) times (number 
of actuators). We denote it by Gm and spell out the steady state relation as 

       (1) 

Here  is a vector describing a change in actuator positions from a previous steady state, and  
is the resulting vector of steady state change in flatness measurement. The minus sign is just a 
choice of convention. 

Flatness control is a multivariable control problem, and in multivariable process control 
directionality plays an important role. You can talk about high gain directions and low gain 
directions, where the former are easy to control and the latter are difficult. It is often hard to get a 
good enough model to be able to control the low gain directions, and you might need to give up 
control of them. To find out what high and low gain directions we have in our flatness control case, 
we make a singular value decomposition of the mill matrix. This is the mathematic expression for 
it: 
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In this expression, the upper part of  is a diagonal matrix holding the singular values { 1, 2, …} in 
the diagonal, and they are ordered from largest to smallest, and all are positive or zero. The lower 
part of  is formed by as many zero rows as there are more sensor positions than actuators. The 
matrix U is orthonormal and its columns form a basis for the space of flatness errors. In the same 
way the matrix V is orthonormal and its columns form a basis for the space of actuators. We have 
assumed that there are more sensor positions than actuators. The singular values are the gains from 



an actuator movement along a column of V to the response in flatness, which actually occurs along 
the corresponding column of U. In the second equality in (2), we make a partitioning of the matrices 
according to high gains and low gains (and those which are zero due to fewer actuators than sensor 
positions). In the last equality in (2), it has been assumed that all singular values in 2 are zero, or 
small enough in comparison with the larger singular values to be approximated to zero. 

Now, we will try to explain in simple words what the singular value decomposition (SVD in short) 
can tell about the properties of the mill matrix and thus about the multivariable flatness control 
problem. 

Suppose we stand in the high dimensional actuator space and want to take a step of size one, 
wondering what direction to choose in order to get the largest possible flatness influence. The 
answer is: Choose the direction given by the first column of V. The size of your flatness response to 
this particular combined movement of actuators will be 1, the largest singular value, and the shape 
of the steady state response will be given by the first column of U. The singular value is the gain, 
and this was the high gain direction. If you then look for the highest gain among remaining actuator 
directions orthogonal to that first one, you will find the second singular value. It is the gain from 
actuator movement along the second column of V, which gives flatness response along the second 
column of U. We can continue like this towards lower and lower singular values (gains), until we 
reach those which can be approximated to zero. We have then found also the low gain directions. 

What is it then that makes high gain directions easy to control and low gain directions hard? In the 
high gain direction, small actuator movements will be enough, and you may disregard interference 
with other directions. Control in a low gain direction is troublesome for at least two reasons: 1) it 
will require large actuator movements which may cause rate saturation and even absolute saturation, 
which both have negative influence on performance, 2) the effect of the large actuator movements 
are supposed to cancel each other in the higher gain directions, and this puts hard demands on 
model accuracy, often harder than possible to fulfill. 

The number of non-zero singular values is what is called the rank of the mill matrix. We may define 
the ‘practical rank’ as the number of singular values that we consider to be high enough gain to be 
addressed by the flatness control. The singular values that are smaller define a (practical) null space 
of the mill matrix. Actuator movements in the null space have no (or insignificant) influence on the 
flatness. The partitioning in (2) is such that the practical rank is given by the size of 1, and 2 holds 
the singular values that are considered too small. The null space is spanned by the columns of V2. 
Another aspect of this is that flatness errors that can be expressed as linear combinations of the 
columns in U2 and U3 cannot be counteracted at all. There are no combinations of actuator 
movements that influence errors of those shapes. All flatness errors that can be counteracted can be 
expressed as linear combinations of the columns of U1. 

A recording from a mill is shown in Figure 1, where the initial flatness and the final flatness are 
equal, but with quite different actuator positions. It has been ascertained that this was not due to a 
changed disturbance situation. This illustrates the fact that the mill matrix for this mill has a null 
space. The actuator movement from the initial positions to the final ones did only cause a transient 
change of the flatness, but no change of steady state flatness, so the same flatness effect from the 
actuators was obtained with both final and initial positions. Further, towards the end the actuators 
still move without influencing the flatness, so this movement also takes place in the null space. This 
mill has eleven actuators and the mill matrix has rank eight, so the null space has dimension three. 
The practical rank is probably rather around five, leaving a practical null space of dimension around 
six. 



 
 

Figure 1. An actual recording from a mill, illustrating that the same flatness influence is obtained with quite 
different actuator positions. The difference in initial and final positions represents a movement in the null 

space. 

In Figure 2 and Figure 3, an example with seven actuators is used to illustrate the singular value 
decomposition of a mill matrix. This example has five crown actuators and two side shifts. This 
example does in fact not have an extremely high ratio between largest and smallest singular values. 
This ratio is called the condition number of the mill matrix. The largest singular value is in this case 

1=3.6 and the smallest 7=0.086, giving a condition number of 42, which is not too bad. But if 
there is some uncertainty in the response functions, one might still want to treat actuator movements 
along the last SVD direction as having no effect (i. e. as being in the null space), since the effect of 
these movements will be small and uncertain. Total elimination of errors shaped according to the 
last SVD direction would in any case require very large actuator movements, thereby easily causing 
them  to  reach  their  constraints.  It  is  therefore  wise  to  give  up  at  least  total  elimination  of  such  
errors. 

 
Figure 2. Steady state flatness response function for each of the actuators 
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Figure 3. Flatness responses along singular value directions. The left hand plot shows combined actuator 

movements that correspond to the respective singular value, and the right hand plot shows the flatness 
response for each of those combined actuator movements. Largest response is obtained when actuators are 

moved along the first SVD direction and smallest response when moved along the last. 

2. CONTROL SOLUTION 

One common control solution uses a parameterized flatness error obtained by minimizing a 
quadratic criterion while honoring actuator constraints. Based on SVD of the mill matrix, this 
solution can be extended to include weights on directions associated with small singular values, 
thereby providing the desired control performance. This “extended SVD control” solution uses all 
actuators  available.  It  can  also  move  them in  the  null  space,  when needed  due  to  constraints,  but  
will not cause unnecessary movement there. The standard control solution is illustrated in Figure 4. 

This standard control solution minimizes a criterion to find a lower dimension parameterization ep 
of the flatness error e. Each element of the parameterized error vector ep is fed to one controller, for 
example a PI controller, and the output of each controller is fed to one of the actuators. In its basic 
original form the criterion to minimize could be expressed as 

2
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The criterion (3) is to be minimized while taking constraints into account. Those constraints are the 
actuator  constraints,  including  their  rate  and  range  constraints  and  for  example  constraints  on  
differences between adjacent crown actuators. Denoting the vector of actuator positions at time t by  
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Figure 4. Block scheme showing the structure of a standard control solution 

u(t), this u(t) which is subject to constraints will depend on the parameterized error ep(t), the 
previous positions u(t-1) and the controller states. In cases when the constraints do not become 
active, the solution to this simple minimization is given by the pseudo-inverse mG  of the mill 
matrix Gm. Thus, for a case with non-singular mill matrix and no active constraints we get the 
parameterized error by the projection 
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This  expression  will  however  get  very  sensitive,  if  the  mill  matrix  has  any  singular  value  that  is  
small in relation to the largest one. The inverse 1

m
T
mGG will not even exist, if any singular value is 

zero. To make this solution, relying on minimization of a criterion like (3), practically usable for 
cases with a singular or near singular mill matrix, you need to either add some kind of 
regularization to the criterion, or make the mill matrix better conditioned for example by gathering a 
number of actuators into fewer virtual actuators. The latter approach will however remove some 
degrees of freedom that the mill could have benefitted from.  

Based on the singular value decomposition, we can introduce a systematic regularization that 
enables  the  full  use  of  all  degrees  of  freedom while  still  avoiding  the  problems associated  with  a  
(near) singular mill matrix. A straightforward version of the extended criterion is 
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It  is  still  to  be  minimized  while  taking  constraints  into  account,  just  as  with  the  original  criterion  
(3). The idea here is that Qe and Qu are chosen as diagonal matrices. The entries in the diagonals 
imply certain weights in the criterion for parameterization of the error and the actuator positions, 
respectively, along the directions sorted according to the singular values (or in other words sorted 
according  to  the  gains).  So,  for  example,  if  we  consider  the  gains  to  be  too  low  from  the  fifth  
singular value and on, then we should choose the fifth and further diagonal elements of both Qe and 
Qu high enough. The first four diagonal elements in these two matrices may in this example be set 
to zero, meaning that no extra weight is applied to parameterizations that give actuator movements 



in the first four directions. The choice of Qe will mainly influence the transient behavior, while the 
choice of Qu will mainly influence the steady state behavior. 

Assuming that, in the criterion (5), the non-zero weights in Qe and Qu correspond to the null space, 
then movement in the null space will be avoided as long as no actuator gets saturated. But when any 
actuator hits a constraint, the control solution will use other actuators to accomplish – at least 
partially  –  what  the  saturated  one  could  not.  This  is  possible  since  movement  in  the  null  space  is  
allowed. Such movement is still avoided when not needed, since there is a penalty in the criterion 
for using it. 

3. TUNING PARAMETERS AND TUNING TOOL 

It is apparent from section 2 that the two matrices Qe and Qu are important for the control behavior 
in the extended SVD control solution. They are, however, not really the kind of intuitive tuning 
parameters that a commissioning engineer would require. What is needed in addition is a tuning tool 
that allows the tuning to be performed on a higher level, providing easily grasped tuning knobs and 
clear presentations of what the expected results will be. 

In tuning, which is made at commissioning, one consideration is the trade-off between robustness 
and  nominal  performance.  One  measure  of  robustness  is  the  peak  of  the  sensitivity  function.  For  
process control it is often chosen to be between 1.2 and 2.0. Lower values in this range mean higher 
robustness towards deviations between the model used in tuning and the actual plant behavior, but 
also slower counteraction of disturbances and therefore lower nominal transient performance. Only 
if you have a model that you trust very well, you would tune the controller to get sensitivity peak 
values in the upper part of the suggested range. If you expect a need for very high robustness, due to 
an uncertain model or varying actual behavior, you could very well tune for a sensitivity peak 
below 1.2 as well. The lower limit for what you can get at all is 1. With a tuning knob for the 
desired sensitivity peak value, the engineer doing the tuning will have good influence over the 
robustness  to  be  obtained.  This  covers  the  multivariable  aspect  of  robustness,  as  we  consider  the  
maximum singular value of the multivariable sensitivity function. 

The sensitivity peak specification is an indirect specification of transient behavior, and it eventually 
leads to values of the diagonal of Qe, found to give the desired peak value. The user also has the 
freedom to select how many directions should be acted on with full force. Those will have zeros in 
the corresponding diagonal position in Qe, and the remaining diagonal elements will be used to get 
the specified sensitivity peak value.  

As a sanity check regarding multivariable behavior, it is also made sure that there is not too much 
cross  talk  interference  between  different  directions  during  transients.  The  user  can  specify  an  
allowed percentage for this cross talk. 

The tuning of the individual controllers (one per actuator) will actually also be part of the tuning of 
transient behavior. So beside some elements of Qe, also a parameter related to the settling time for 
the individual control loops will be found automatically to get the desired sensitivity peak, and cross 
talk below limits. 

An important part of any tuning tool is clear presentation of expected control performance. The 
transient behavior can here be studied for a number of different disturbances, also with a validation 
model that may differ from the nominal one used in the tuning. This way one may check both the 
nominal performance and the robustness. In addition to that, the actually obtained sensitivity peak 
value is presented, as well as the closed loop time constant for the individual loops. 



 
 

Figure 5. A tuning tool view. On top there are tuning inputs and some resulting performance measures. To 
the left there are simulation choices, in this case selecting a disturbance along the fourth SVD direction 

applied in closed loop with the nominal model and ignoring actuator constraints. The graphs are divided as 
follows: The upper graphs show the flatness response and the lower graphs show the actuator positions. The 
graphs to the left show the transient response while the graphs to the right shows the result at the end of the 
simulation. In the upper right graph only the initial errors are visible (white bars), since the final errors are 

zero in this simulation. 

An example  view from the  tuning  tool  can  be  seen  in  Figure  5.  In  this  view,  the  evolution  of  the  
flatness error can be viewed in a 3D plot (like the figure), or expressed with either the SVD basis or 
a polynomial basis. The actuator movements can be viewed as is (like the figure) or expressed with 
the SVD basis, and one can also choose to view their possible movement in the null space. 

The steady state behavior with extended SVD control is mainly determined by the choice of Qu. The 
concern of the tuning engineer is to avoid too high closed loop steady state gain from disturbance to 
actuators, since that would too easily cause actuator saturation. For directions corresponding to 
large singular values of the mill matrix (high gain directions) this is no problem, but it may be for 
low gain directions. So the Qu diagonal elements corresponding to large singular values should be 
zero and the rest should be found based on the setting of a suitable intuitive tuning knob. This knob 
can be the highest allowed steady state gain from disturbances to actuators. The tool can easily 
translate that to required values for the Qu diagonal elements and calculate the resulting steady state 
attenuation of disturbances. In addition, it is possible to let the engineer choose for how many SVD 
directions disturbances should be completely eliminated in steady state, provided the mentioned 
gains do not exceed the specified limit. And it is possible to state that if disturbances in any SVD 
direction cannot be attenuated more than a certain percentage, control of it should be given up 
totally. All these settings may influence the finally obtained diagonal elements of Qu.  



To check the result of the steady state tuning a view is available in the tool, as exemplified in Figure 
6.  In this example,  disturbances along the first  six SVD directions are totally eliminated in steady 
state, but since a limit of 15 was specified for the steady state gain from disturbance to actuators, 
disturbances along the last SVD direction will be attenuated only by 36%. The limit value is 
normalized with respect to the first SVD direction, which means that a value of 15 allows 15 times 
more  actuator  movements  than  the  first  SVD  direction.  This  view  will  help  the  tuning  engineer  
check the expected behavior and select a suitable steady state tuning. 

 

 
 

Figure 6. A tuning tool view presenting the steady state responses in closed loop. For each SVD direction, 
there is one plot showing an initial and final flatness error (white and blue bars respectively), when a 

disturbance of that shape occurs, and below that the final position of the actuators (blue bars), assuming 
they were in zero position before the disturbance occurred. Here, each disturbance has the same norm, so 

the actuator movements required to reach the presented final error can be directly compared. 

4. PRACTICAL EXPERIENCE 

The presented control solution extended SVD has been commissioned in a cluster mill containing 
11 actuators with great results. The mill matrix in this mill has a theoretical rank of eight. The 
practical rank, however, was considered to be four, leaving a practical null space of dimension 
seven.  The  ratio  between the  largest  (first)  and  sixth  singular  value  was  130,  which  means  that  it  
would require 130 times larger actuator movements to eliminate a disturbance according to the sixth 
SVD direction in comparison to a disturbance of the same size for the first SVD direction. This is 
far too high to be practically possible. The corresponding ratios for the fourth and fifth singular 
values were  22 and 38. Both are plausible depending on the accuracy of the mill matrix. The better 



the flatness response models are, the more SVD directions can be used in control. To determine the 
model accuracy, a system identification experiment was performed in the mill where the actuators 
were excited according to their SVD directions and the corresponding flatness responses were 
recorded. Analysis showed that the recorded flatness responses and the SVD directions from the 
nominal mill matrix agreed very well up to the fourth direction. The fifth SVD direction, however, 
did not the match the expected shape since the actuator movements that were supposed to cancel 
each  other  out  failed  in  doing  so.  Instead  of  a  getting  a  low gain  direction,  the  result  was  a  quite  
high gain direction of a completely different shape than expected. Of course, this direction could 
not be included in control, which resulted in a steady state tuning that included four SVD directions 
as can be seen in Figure 7.  

 

 
 

Figure 7. Steady state tuning used in control of the cluster mill. Four SVD directions were used in the 
control  

The former flatness control solution made the mill matrix better conditioned by mapping actuators 
with similar flatness responses together, thereby reducing the number of control loops. In addition, 
the crown actuators were not used in the automatic flatness control; they were only used for manual 
operation by the mill operators. Of course, this control solution has removed valuable degrees of 
freedom. 

In Figure 8 below, a startup of a coil is plotted. The upper graph shows the actuators positions, the 
middle graph shows the flatness error (flatness target – measured flatness) and the lower graph 
shows the mean flatness and the used control strategies. A thin blue line at the bottom of the lower 
graph indicates the former control solution and the thick blue line indicates the use of extended 
SVD control. As can be seen in both the 3D graph of the flatness error and the graph of the mean 
flatness, the former control performs poorly due to the fact that several actuators are saturated (as 



can be seen in the upper graph as horizontal straight lines). When switching to extended SVD 
control, all actuators could be used in control and the full use of the available degrees of freedom 
resulted in a significant drop in flatness error and mean flatness. The average flatness was improved 
from a value of 17 to 4 I-units. 

 

 
 

Figure 8. A recording from the startup of a coil, initially using the previous control solution and activating 
the extended SVD control after roughly two thirds of the recording (thick line in the bottom graph). 

Both process engineers and operators at the cluster mill were pleased with the extended SVD 
control. First of all, all actuators were individually used in the automatic control and thereby using 
all degrees of freedom. Secondly, the actuators were more centered within their working ranges, 
which minimized saturation limit situations and thereby could reduce wear and maintenance of the 
actuators. 

5. CONCLUSIONS 

We can conclude that the systematic way of treating the mill matrix using singular value 
decomposition is an efficient way for understanding the multivariable control problem inherent in 
flatness control for cases with many actuators. The extended SVD control solution that is based on 
it has also proved to give the desired control accuracy. It retains all degrees of freedom and uses all 
actuators available. In particular it handles actuator constraints efficiently, since it can use other 
actuators to provide the same effect, when one actuator has become saturated. 
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